x射线检查

    无损检测


    无损检测是指在不损害或不影响被检测对象使用性能,不伤害被检测对象内部组织的前提下,利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试的方法。



    概要

          NDT (Non-destructive testing),就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称

      无损检测室工业发展必不可少的有效工具,在一定程度上反应了一个国家的工业发展水平,其重要性已得到公认。我国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。我国目前开设无损检测专业课程的高校有大连理工大学西安工程大学南昌航空工业学院等院校。在无损检测的基础理论研究和仪器设备开发方面,我国与世界先进国家之间仍有较大的差距,特别是在红外、声发射等高新技术检测设备方面更是如此。

      常用的无损检测方法:射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)、涡流检测和泄漏检测(LT) )六种。其他无损检测方法:声发射检测(ET)、热像/红外(TIR)、交流场测量技术(ACFMT)、漏磁检验(MFL)、远场测试检测方法(RFT)等。

    发展

          今天,无损检测已不再是仅仅使用X 射线,包括声、电、磁、电磁波、中子、激光等各种物理现象几乎都被用做于了无损检测,譬如:超声检测、涡流检测、磁粉检测、射线检测、渗透检测、目视检测、红外检测、微波检测、泄漏检测、声发射检测、漏磁检测、磁记忆检测、热中子照相检测、激光散斑成像检测、光纤光栅传感技术,等等,而且还在不断地开发和应用新的方法和技术。

      一些看上去非常传统的无损检测方法,实际上也已经发展出了许多新技术,譬如:

      射线检测——传统技术是:胶片射线照相(X 射线和伽马射线)。新技术有:加速器高能X射线照相、数字射线成像(DR)、计算机射线照相(CR,类似于数码照相)、计算机层析成像(CT)、射线衍射等等。

      超声检测——传统技术是:A 型超声(A 扫描超声,A 超)。新技术有:B 扫描超声(B 超)、C 扫描超声(C 超)、超声衍射(TOFD)、相控阵超声、共振超声、电磁超声、超声导波等等。

    X光机

      用于工业部门的工业检测X光机[1],通常为工业无损检测X光机(无损耗检测),此类便携式X光机可以检测各类工业元器件、电子元件、电路内部。例如插座插头橡胶内部线路连接,二极管内部焊接等的检测。BJI-XZ、BJI-UC等工业检测X光机是可连接电脑进行图像处理的X光机,此类工业检测便携式X光机为工厂家电维修领域提供了出色的解决方案。

    特点

      a.无损检测的最大特点就是能在不损坏试件材质、结构的前提下进行检测,所以实施无损检测后,产品的检查率可以达到100%。但是,并不是所有需要测试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。某些试验只能采用破坏性试验,因此,在目前无损检测还不能代替破坏性检测。也就是说,对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结果互相对比和配合,才能作出准确的评定。

      b.正确选用实施无损检测的时机:在无损检测时,必须根据无损检测的目的,正确选择无损检测实施的时机。

      c.正确选用最适当的无损检测方法:由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、形状、部位和取向,选择合适的无损检测方法。

      d.综合应用各种无损检测方法:任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。此外在无损检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。只有这样,无损检测在承压设备的应用才能达到预期目的。

     

    方法

      一、射线检测(RT):图1

      是指用X射线或g射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。

      1、射线照相检验法的原理:射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线能量也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。

      2、射线照相法的特点:射线照相法的优点和局限性总结如下:a.可以获得缺陷的直观图像,定性准确,对长度、宽度尺寸的定量也比较准确;b.检测结果有直接记录,可长期保存;c. 对体积型缺陷(气孔、夹渣、夹钨、烧穿、咬边、焊瘤、凹坑等)检出率很高,对面积型缺陷(未焊透未熔合、裂纹等),如果照相角度不适当,容易漏检。d.适宜检验厚度较薄的工件而不宜较厚的工件,因为检验厚工件需要高能量的射线设备,而且随着厚度的增加,其检验灵敏度也会下降;e.适宜检验对接焊缝,不适宜检验角焊缝以及板材、棒材、锻件等;f.对缺陷在工件中厚度方向的位置、尺寸(高度)的确定比较困难;g.检测成本高、速度慢;h.具有辐射生物效应,能够杀伤生物细胞,损害生物组织,危及生物器官的正常功能。

      二、超声检测(UT)

      1、超声检测的定义:通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。

      2、超声波工作的原理:主要是基于超声波在试件中的传播特性。a.声源产生超声波,采用一定的方式使超声波进入试件;b.超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c.改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d.根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。

      3、超声波检测的优点:a.适用于金属、非金属和复合材料等多种制件的无损检测;b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;c.缺陷定位较准确;d.对面积型缺陷的检出率较高;e.灵敏度高,可检测试件内部尺寸很小的缺陷;f.检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。

      4、超声波检测的局限性a.对试件中的缺陷进行精确的定性、定量仍须作深入研究;b.对具有复杂形状或不规则外形的试件进行超声检测有困难;c.缺陷的位置、取向和形状对检测结果有一定影响;d.材质、晶粒度等对检测有较大影响;e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。

      5、超声检测的适用范围a.从检测对象的材料来说,可用于金属、非金属和复合材料;b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;c.从检测对象的形状来说,可用于板材、棒材、管材等;d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。

      三、磁粉检测(MT)

      1. 磁粉检测的原理:铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。

      2. 磁粉检测的适用性和局限性:a.磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹),目视难以看出的不连续性。b.磁粉检测可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测。c.可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。d.磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。

      四、渗透检测(PT)

      1.液体渗透检测的基本原理:零件表面被施涂含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。

      2.渗透检测的优点:a.可检测各种材料;金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式;b.具有较高的灵敏度(可发现0.1μm宽缺陷)c.显示直观、操作方便、检测费用低。

      3.渗透检测的缺点及局限性:a.它只能检出表面开口的缺陷;b.不适于检查多孔性疏松材料制成的工件和表面粗糙的工件;c.渗透检测只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价。检出结果受操作者的影响也较大。

      五、涡流检测(ET)

      涡流检测(ET)的英文名称是:Eddy Current Testing,工业上无损检测的方法之一。给一个线圈通入交流电,在一定条件下通过的电流是不变的。如果把线圈靠近被测工件,像船在水中那样,工件内会感应出涡流,受涡流影响,线圈电流会发生变化。由于涡流的大小随工件内有没有缺陷而不同,所以线圈电流变化的大小能反映有无缺陷

      涡流检测是建立在电磁感应原理基础之上的一种无损检测方法.它适用于导电材料.如果我们把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流.由于导体自身各种因素(如电导率,磁导率,形状,尺寸和缺陷等)的变化,会导致感应电流的变化,利用这种现象而判知导体性质,状态的检测方法叫做涡流检测方法.

           六、泄漏检测(LT)

          在以干燥空气为介质的全自动泄漏检测中,对被测工件充气加压并确定所充气体是否外泄。外泄的气体是不能直接被测量的,而是通过外泄气体所产生的效应入手,也就是说当把工件和压缩空气气源切断后(压力测量法),如果气体外泄则工件内部的压力必然要发生变化,我们要测量的便是这个压力变化。或者,当工件或压缩空气气源一直保持联接时(流量测量法),如果气体外泄则工件内部将不断地有气流通过,我们要测量的便是这个气流的流量。无论采用压力测量法或流量测量法,均有几种相应的不同型号的仪器供用户选择。

    (1)压力测量法检测

           在当今工业气密检测中,压力检测是一种最常用的检测方式。当测试容积较小时,泄漏率的设定可从0.1cc/min开始。以直压检测法为前提,可使测试装置的结构设计尽量紧凑并尽可能的使测试系统的自身容积达到最小。从而可获得较高的工作可靠性并达到较大的测试范围。测试信号的分辨率取决于测试压力的高低。当采用差压法时,因测试信号的分辨率与测试压力的高低无关,则在较高的测试压力下,可获得比直压检测法更高的测试精度。采用压力降低法并在被测工件过压的状态下可模拟通常的工作条件。基于压力升高法并采取分压测试方式,可极大地抑制由封堵卡具或工件所产生的温度变化以及容积的不稳定而导致的影响,其抑制效果要好于压力降低法。采用压力升高法并在过压的状态下工作时,可省去测试过程中的平衡阶段。另外,测试压力的高低不受测量元器件压力范围的限制,其原因是它们与测试压力无关。

    (2)流量测量法检测

           在采用前面讲过的压力测量法中,被测容积越大测量信号就会变的越小;而在流量法中,测量信号与被测容积的大小无关。这一点在校正系统时便显得十分方便。流量法中的流量信号可直接反映为校正而设定的气体泄漏量。

            一般来说,体积流量法(例如通过一个节流元件的压力降)可将泄漏测试(小泄漏率)和流量测试(大泄漏率)在同一测试系统中完成。例如,在监测燃油系统通路时,采用体积流量法的仪器带有同样有检测元件(差压式传感器)以压力降低法对彼系统进行边续不断地泄漏检测。

            在采用质量流量法(热测法)时,测试信号不仅与测量容积的大小无关,而且与测量压力的高低也没有关系。测试信号将以泄漏率的标准单位cc/min形式直接表示出泄漏量的大小,而无须(例如压力测量法)再对泄漏率进行计算

    原理

    涡流检测是建立在电磁感应原理基础之上的一种无损检测方法,它适用于导电材料,如果我们把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流,由于导体自身各种因素(如电导率、磁导率、形状、尺寸和缺陷等)的变化会导致感应电流的变化,利用这种现象而判知导体性质、状态的检测方法,叫做涡流检测方法。

    涡流探伤中,是靠检测线圈来建立交变磁场;把能量传递给被检导体;同时又通过涡流所建立的交变磁场来获得被检测导体中的质量信息。所以说,检测线圈是一种换能器。检测线圈的形状、尺寸和技术参数对于最终检测是至关重要的。在涡流探伤中,往往是根据被检测的形状,尺寸、材质和质量要求(检测标准)等来选定检测线圈的种类。常用的检测线圈有三类:

    穿过式线圈; 穿过式线圈是将被检测试样放在线圈内进行检测的线圈,适用于管、棒、线材的探伤。由于线圈产生的磁场首先作用在试样外壁,因此检出外壁缺陷的效果较好,内壁缺陷的检测是利用的渗透来进行的。一般来说,内壁缺陷检测灵敏度比外壁低。厚壁管材的缺陷是不能使用外穿式线圈来检测来的。

    内插式线圈; 内插式线圈是放在管子内部进行检测的线圈,专用来检查厚壁或钻孔内壁的缺陷,也用来检查成套设备中管子的质量,如热交换器管的在役检验。

    探头式线圈; 探头式线圈是放置在试样表面上进行检测的线圈,它不仅适用于形状简单的板材、板坯、方坯、圆坯、棒材及大直径管材的表面扫描探伤,也适用于形状较复杂的机械零件的检查。与穿过式线圈相比,由于探头式线圈的体积小、场作用范围小,所以适于检出尺寸较小的表面缺陷。

    选择

    1.原材料检验

    (1)板材                    UT

    (2)锻件和棒材          UT、MT(PT)

    (3)管材                    UT(RT)、MT(PT)

      (4)  螺栓                     UT、MT(PT)

    2.焊接检验

    (1)坡口部位             UT、PT(MT)

    (2)清根部位             PT(MT)

    (3)对接焊缝             RT(UT)、MT(PT)

    (4)角焊缝和T形焊缝UT(RT)、PT(MT)

    3.其他检验

    (1)工卡具焊疤          MT(PT)

    (2)复合材料复合层检测,爆炸复合层 UT

    (3)复合材料复合层检测,爆炸复合层,焊接前 MT(PT)

    (4)复合材料复合层检测,爆炸复合层,焊接后 UT、PT

    (5)水压试验后           MT

    现状

    无损检测技术的发展在很大程度上取决于国家的生产技术水平和经济发展程度。过去一段时期我国经济的高速发展和综合国力的快速增强给无损检测事业的发展创造了前所未有的发展机遇,各工业部门和国防单位的无损检测事业都进入快速发展期并取得了令世人瞩目的成绩。

      我国无损检测技术近几年的发展具有如下一些显著特点。首先是应用领域十分广泛,几乎涵盖各主要工业部门。除大家熟知的航空航天、石油化工、铁路、核电、冶金、压力容器和特种设备、矿山机械等领域外,无损检测技术在一些过去甚少应用的工业部门或新工业领域也能顺势前进,满足国家的需要,诸如在海底石油勘探和海洋石油平台,高速铁路,高速公路、超超临界发电锅炉,特高压输电线路和变压器,核反应堆部件等领域也有十分良好的应用势头。