x射线检查

    晶体取向

    晶体取向一般指的是共价晶体的方向性。即在某一特定方向上形成共价键。根据共价键的量子理论,共价键的强弱取决于电子云的交叠程度。由于非满壳层电子分布的非对称性,因而总是在电子云密度最大的方向成键。 


    原理

    多晶金属材料经机械加工、热处理等工艺,往往使晶粒的某些晶向或晶面与材料加工方向趋于一致。这种晶体取向称为择优取向或织构,它引起X射线衍射花样发生变化,使得连续均匀的衍射环成不连续、强度加强的斑点或弧段,而另一些晶面的衍射线强度变小甚至消失。测定织构的方法有多种中,但X射线方法具有准确、全面等特点,所以成为研究织构最主要的方法。 在X射线衍射法中,一般用“极图”来表达织构。所谓极图就是将材料各个晶粒的某一晶面的极点完全投影在同一个极射赤面投影的基圆上,这样 一张极射赤面投影图称为{hkl}极图。测定极图可用照相法和衍射法两种。


    测定法

    经冷拉、冷挤压的丝材、棒材,其大部分晶粒的[hkl]晶向都趋于与丝轴方向平等。因此丝织构的测定就是定出丝纤轴的指数。由于丝材的横载面较小,所以常采用针孔照相法进行测定,用单色X射线从垂直于丝轴方向照到样品上,得到一张透射德拜相。将一系列德拜环进行指标化,根据衍射角及衍射环不均匀分布的情况,求出各环上加强斑点所对应的晶面法线与丝轴间的夹角。最后从晶体中晶面夹角的关系求得纤维轴的系数。


    取向的选择

    随着单晶高温合金的发展,更多的难熔元素如Re,Ru 等添加进了单晶高温合金,进一步提高了其高温力学性能,但同时也带来一系列问题,如杂晶形成,晶体取向的控制更加困难等等。同时单晶叶片复杂的几何形状,造成模壳的几何形状也需不断变化,致使定向凝固时辐射挡板与模壳的间隙不断变化,导致凝固时固液界面的波动,因此不太可能在铸件任何部位都保持完整的 001 > 晶体学取向。因此,单晶叶片取向偏离在某种程度上是难以防止的。这就需要获得晶体取向偏离轴向不同角度时其对高温力学的影响规律,以制定合格铸件对于取向偏离的容忍度。由于晶体的取向和凝固组织密切相关,获得晶体取向与凝固组织和析出相的关系,有助于进一步从原理上澄清晶体取向和力学性能的关系。

    对高温合金晶体取向的研究及控制已经取得很多成果,总结起来,主要有以下几点:

    ( 1) 镍基单晶高温合金晶体取向具有显著的各向异性。不同取向单晶的高温拉伸性能、抗蠕变、低周疲劳等性能均有明显不同, 001 > 取向单晶具有较高的综合力学性能。

    ( 2) 晶体取向与镍基单晶高温合金凝固组织密切相关。不同取向的枝晶生长规律不同,造成各异的枝晶组织形态和枝晶间距,溶质元素在不同取向的偏析程度不同。

    ( 3) 螺旋选晶器引晶段的主要作用是优化晶粒取向,以便获得取向良好的 001 > 取向的晶粒。螺旋段的主要作用是确保一个晶粒进入铸件,其几何参数对最终单晶取向没有明显影响。螺旋选晶器引晶段顶端最后保留的晶粒取向将直接决定最终单晶铸件的晶体取向。

    (4) 籽晶法制备单晶过程中,在枝晶界面条件下晶体的取向和生长状态,主要由籽晶的取向决定。在胞晶界面状态下,胞晶的生长方向仍由热流方向决定。籽晶法能获得取向度较高的单晶。

    (5) 较高的温度梯度和合适的拉晶速率,保持平整的凝固界面,有助于获得取向偏离较小的单晶。


    对晶体取向的研究,应注意以下几个方面:

    (1) 进一步研究晶体取向与凝固组织的关系,弄清楚晶体界面演化过程中晶体取向的转变特点。

    (2) 研究工艺参数对单晶高温合金晶体生长取向的影响。进一步探索螺旋选晶器结构参数优化对晶体取向控制的作用规律。

    在较大范围内改变凝固界面前沿的温度梯度,系统研究温度梯度对晶体取向控制的作用。探索变截面造成的温度场和溶质场变化等因素对晶体取向的作用,建立相关模型,采用计算机模拟与实验对比实现精确控制取向的目的。

    (3) 研究晶体取向在晶粒生长中的作用。单晶制备中不可避免产生小角度晶界、杂晶等,研究晶体取向在螺旋选晶和晶粒淘汰中的作用机制,对控制凝固缺陷形成具有重要意义 




    总结和展望

    随着单晶高温合金的发展,更多的难熔元素如Re,Ru 等添加进了单晶高温合金,进一步提高了其高温力学性能,但同时也带来一系列问题,如杂晶形成,晶体取向的控制更加困难等等。同时单晶叶片复杂的几何形状,造成模壳的几何形状也需不断变化,致使定向凝固时辐射挡板与模壳的间隙不断变化,导致凝固时固液界面的波动,因此不太可能在铸件任何部位都保持完整的 001 > 晶体学取向。因此,单晶叶片取向偏离在某种程度上是难以防止的。这就需要获得晶体取向偏离轴向不同角度时其对高温力学的影响规律,以制定合格铸件对于取向偏离的容忍度。由于晶体的取向和凝固组织密切相关,获得晶体取向与凝固组织和析出相的关系,有助于进一步从原理上澄清晶体取向和力学性能的关系。

    对高温合金晶体取向的研究及控制已经取得很多成果,总结起来,主要有以下几点:

    ( 1) 镍基单晶高温合金晶体取向具有显著的各向异性。不同取向单晶的高温拉伸性能、抗蠕变、低周疲劳等性能均有明显不同, 001 > 取向单晶具有较高的综合力学性能。

    ( 2) 晶体取向与镍基单晶高温合金凝固组织密切相关。不同取向的枝晶生长规律不同,造成各异的枝晶组织形态和枝晶间距,溶质元素在不同取向的偏析程度不同。

    ( 3) 螺旋选晶器引晶段的主要作用是优化晶粒取向,以便获得取向良好的 001 > 取向的晶粒。螺旋段的主要作用是确保一个晶粒进入铸件,其几何参数对最终单晶取向没有明显影响。螺旋选晶器引晶段顶端最后保留的晶粒取向将直接决定最终单晶铸件的晶体取向。

    (4) 籽晶法制备单晶过程中,在枝晶界面条件下晶体的取向和生长状态,主要由籽晶的取向决定。在胞晶界面状态下,胞晶的生长方向仍由热流方向决定。籽晶法能获得取向度较高的单晶。

    (5) 较高的温度梯度和合适的拉晶速率,保持平整的凝固界面,有助于获得取向偏离较小的单晶。

    对晶体取向的研究,应注意以下几个方面:

    (1) 进一步研究晶体取向与凝固组织的关系,弄清楚晶体界面演化过程中晶体取向的转变特点。

    (2) 研究工艺参数对单晶高温合金晶体生长取向的影响。进一步探索螺旋选晶器结构参数优化对晶体取向控制的作用规律。

    在较大范围内改变凝固界面前沿的温度梯度,系统研究温度梯度对晶体取向控制的作用。探索变截面造成的温度场和溶质场变化等因素对晶体取向的作用,建立相关模型,采用计算机模拟与实验对比实现精确控制取向的目的。

    (3) 研究晶体取向在晶粒生长中的作用。单晶制备中不可避免产生小角度晶界、杂晶等,研究晶体取向在螺旋选晶和晶粒淘汰中的作用机制,对控制凝固缺陷形成具有重要意义